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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 12
Solutions by T. Bunn and J. Barber

Reading:
105 Notes 14.6
Hand & Finch 10.1-10.2

1.
Consider a uniform cube of side L. Inside the
cube is a scalar field φ that satisfies the wave
equation with characteristic wavespeed c. At the
surfaces of the cube, φ is required to vanish.
(a)
Show that for this system the total number of
modes of vibration corresponding to frequen-
cies between ν and ν + dν is 4π2L3ν2dν/c3, if
πc/L � dν � ν.
Solution:
Let’s first figure out what the normal modes look
like. The wave equation inside the box is

∇2φ− 1
c2
∂2φ

∂t2
= 0

You can solve this equation by separation of vari-
ables: Assume that the solution is of the form
φ(x, y, z, t) = X(x)Y (y)Z(z)T (t), and you’ll find
that the solutions are of the form

φ ∝ ei(kxx+kyy+kzz−ωt) , where

ω2 ≡ c2(k2
x + k2

y + k2
z) .

In order to satisfy the boundary condition φ = 0
on the edges of the box, the complex exponen-
tials in x, y, z must all be sines, not cosines,
and the numbers kx, ky, kz must all be integer
multiples of π/L. So the normal modes are

φ ∝ eiωt sin
lπx

L
sin

mπy

L
sin

nπz

L

with l,m, n positive integers. The frequency of
a given mode is ν = ω/2π = (c/2π)|�k|, where
�k = (kx, ky, kz) =

(
lπ
L ,

mπ
L , nπ

L

)
. We need to find

the number of modes between ν and ν + dν, but
since ν and |�k| are proportional, let’s find the
number between |�k| and |�k|+ d|�k| instead.

Let N(k) be the number of modes whose wave
vector �k is of length less than k. If you picture
the wave vectors as points in three-dimensional
space, N(k) is the number of points inside of
one octant of a sphere of radius k. (It’s only one
octant because negative values of the integers
l,m, n don’t lead to physically distinct states.)
Using the usual formula for the volume of the
sphere, we get

N(k) =
1
8
· 4π
3
k3 ·

(
density of wave vectors

in k-space

)

The last term is simply the number of allowed
�k’s per unit volume in k-space. The allowed
k-vectors are spaced on a cubic lattice of side
π/L, so there is one vector per volume (π/L)3.
The density is therefore (L/π)3 vectors per unit
volume, and

N(k) =
L3k3

6π2

Use the formula k = 2πν/c to get N(ν) =
4πL3ν3/3c3 for the number of modes with fre-
quency less than ν. The number of modes
between ν and ν + dν is the differential of this:

dN =
4πL3

c3
ν2 dν

(b)
What would the result be for a (two-dimensional)
square?
Solution:
In two dimensions, use the formula for the area of
a one quadrant of a circle instead of the volume
of one octant of a sphere, and use (L/π)2 instead
of (L/π)3 for the density in k-space. Then

N(k) =
1
4
πk2

(
L

π

)2
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Convert to frequency and differentiate to get

dN =
2πL2

c2
ν dν

(c)
A (one-dimensional) rod?
Solution:
In one dimension, k-space is just a line, and so
instead of the volume or the area, you just have
the length. The same process gives

dN =
2L
c
dν

2. and 3. (double credit problem)
Consider a homogeneous isotropic solid medium,
i.e. a medium that, unlike a liquid, is able to re-
sist being twisted (it “supports a shear stress”).
The Lagrangian density for such a medium is

L′ =
1
2
ρ
∂ui

∂t

∂ui

∂t
− 1

2
∂ui

∂xj
Cijkl

∂uk

∂xl
,

where summation over repeated indices is (defi-
nitely!) implied. In this expression, the field vari-
ables are u1(x1, x2, x3, t), u2(x1, x2, x3, t), and
u3(x1, x2, x3, t). These describe the (vector) dis-
placement u of a small element of the solid from
its equilibrium position x. (The strain is ob-
tained by taking spatial derivatives of u.) The
mass density of the solid is ρ, which for small
values of u can be approximated as a constant.
Cijkl is the “fourth-rank tensor of elasticity”.

Exploiting the homogeneous medium’s isotropy,
one can show that the most general form for
Cijkl is

Cijkl = λδijδkl + µ(δikδjl + δilδjk) ,

where λ and µ, the so-called “Lamé constants”,
determine all 81 of its elements. The inverse
of the compression modulus λ is proportional to
the compressibility of the medium, and the in-
verse of the shear modulus µ is proportional to
the extent to which the medium can be twisted.

Notice that the Lagrangian density for a solid
medium could in principle depend on 19 vari-
ables (3 field variables, 3×4 derivatives of 3 field

variables with respect to 4 independent vari-
ables, and 4 independent variables). In practice,
our Lagrangian density has no dependence on
the first and last category, so it is a function of
only 12 variables.

Use the Euler-Lagrange equations for this La-
grangian density to derive the wave equations
for compression waves (∇×u = 0) and for shear
waves (∇ · u = 0) in the solid. Obtain the phase
velocity c for both cases, in terms of λ, µ, and ρ.
Notice that an earthquake can propagate with
more than one velocity!
Solution:
Start from the Euler-Lagrange equation

d

dt

(
∂L′

∂u̇n

)
+

d

dxm


 ∂L′

∂
(

∂un

∂xm

)

 − ∂L′

∂un
= 0

The first term just gives ρün, and the third term
is zero. Let’s figure out the second term.

∂L′

∂
(

∂un

∂xm

) = −1
2
Cnmkl

∂uk

∂xl
− 1

2
Cijnm

∂ui

∂xj

= −1
2
(Cnmij + Cijnm)

∂ui

∂xj

= −λδnm
∂ui

∂xi
− µ

(
∂un

∂xm
+
∂um

∂xn

)
.

Taking the derivative with respect to xm, we get

d

dxm


 ∂L′

∂
(

∂un

∂xm

)

 =

= −λ ∂2ui

∂xn ∂xi
− µ

∂2un

∂xm ∂xm
− µ

∂2um

∂xm ∂xn

= −(λ+ µ) (∇ (∇ · �u))n − µ∇2un .

So the full Euler-Lagrange equation is

ρ
∂2�u

∂t2
− (λ+ µ)∇ (∇ · �u)− µ∇2�u = 0

Now let’s use this to get the wave equation for
compression and shear waves. First, suppose
∇ × �u = 0, so we have a compression wave.
Then we can perform a trick to get rid of the
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unwanted ∇(∇·�u) term in the wave equation: If
∇× �u = 0, then ∇× (∇× �u) = 0. But there’s a
vector identity that says

∇× (∇× �u) = ∇(∇ · �u)−∇2�u

so ∇(∇ · �u) = ∇2�u. Then the wave equation
becomes

ρ
∂2�u

∂t2
− (λ+ 2µ)∇2�u = 0

That’s the wave equation for compression waves.
The wave speed is given by c2c = (λ+ 2µ) /ρ.

Shear waves are easier. Since ∇ · �u = 0, the
Euler-Lagrange equation becomes

ρ
∂2�u

∂t2
− µ∇2�u = 0

and the wave speed is given by c2s = µ/ρ.

4.
Consider an infinitely long continuous string in
which the tension is τ . A mass M is attached
to the string at x = 0. If a sinusoidal wave train
with velocity ω/k is incident from the left, ana-
lyze the reflection and transmission that occur at
x = 0. Define the reflection coefficient R ≡ |R|2
and the transmission coefficient T ≡ |T |2, where
R and T are the reflected and transmitted am-
plitude ratios discussed in Lecture Notes section
14.6.

Show that R and T are given by R = sin2 θ
and T = cos2 θ, where tan θ = Mω2/2kτ . [Hint:
Consider carefully the boundary condition on
the derivatives of the wave functions at x = 0 .]
Solution:
Call the displacement y1 for x < 0 and y2 for
x > 0. Then y1 and y2 are of the form

y1(x, t) = Re
(
Aeikx−iωt +Be−ikx−iωt

)
y2(x, t) = Re

(
Ceikx−iωt

)
,

where A,B,C are the (complex) amplitudes of
the incident, reflected, and transmitted waves,
respectively. The requirement that y1(0, t) =
y2(0, t) yields a real equation; we choose to solve

the complex equation of which that equation is
the real part. It is

A+B = C .

If the point mass weren’t there, we would im-
pose the condition that the forces just to the left
and right of x = 0 add up to zero. That re-
quirement is not satisfied here, since the point
mass at x = 0 is accelerating, and so the net
force on it must be nonzero. Instead, we can
apply Newton’s second law: F1y + F2y = Mÿ.
Here F1y means the y-component of the force ex-
erted by the left half of the string on the mass.
Clearly this is −τ sinφ, where φ is the angle the
left half of the string makes with the horizon-
tal. The slope of the string is dy1/dx = tanφ,
but for small angles sinφ ≈ tanφ, so we can say
F1y = −τ dy1/dx. Similarly, F2y = τ dy2/dx. So
our second boundary condition is

τ

(
dy2

dx
− dy1

dx

)
= Mÿ

(The y on the right-hand-side can be either y1

or y2, since they’re equal at x = 0.) Using our
expressions for y1 and y2, we get

ikτ(C −A+B) = −Mω2C

Solving these two equations, we get

B =
−Mω2A

Mω2 + 2ikτ

C =
2ikτA

Mω2 + 2ikτ

The reflection and transmission coefficients are

R =
∣∣∣∣BA

∣∣∣∣
2

=
M2ω4

M2ω4 + 4k2τ2

T =
∣∣∣∣CA

∣∣∣∣
2

=
4k2τ2

M2ω4 + 4k2τ2

If we define T = cos2 θ and R = sin2 θ, then

tan θ =
√

R
T = Mω2

2kτ .

5.
Hand & Finch, Problem 10.1 (stability in a cen-
tral force)
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Solution:
(a)
From Hand and Finch equation 4.41, we have

µr̈ =
l2

µr3
+

nβ

rn+1

To find the radius ro of a stationary circular
orbit, we set r̈ = 0.

0 =
l2

µr3o
+

nβ

rn+1
o

ro =
(
−nβµ

l2

) 1
n−2

In order for this quantity to exist, we must have
nβ < 0 and n 
= 2. (If n = 2, we can have
(not stable) circular orbits at any r0 only if
β = −l2/2µ.)
(b)
Let r = ro + δr(t), where δr � ro. Plugging this
into the above equation yields

µδ̈r =
l2

µ(ro + δr)3
+

nβ

(ro + δr)n+1 .

Now Taylor expand around δr = 0 to get

µδ̈r = −
(
3l2

µr4o
+

(n+ 1)nβ
rn+2
o

)
δr

δ̈r = − l2

µ

(
−nβµ

l2

) 4
2−n

(2− n)δr

In order for the circular orbit to be stable, we
must have the coefficient of δr in the above ex-
pression be < 0. Since we already know that
nβ < 0, this requires that n < 2.

6.
Hand & Finch, p. 397, Question 6 (upside-down
pendulum)
Solution:
With our origin at the point of support of the
pendulum, we have x = l sin θ and y = Y (t) −
l cos θ. Since we are interested in the case where
θ is near π, we make the substitution θ = π+ψ.
Differentiating with respect to time yields

ẋ = −lψ̇ cosψ

ẏ = Ẏ − lψ̇ sinψ .

And so the kinetic and potential energies are:

T =
m

2
(ẋ2 + ẏ2)

=
m

2

(
l2ψ̇2 − 2lẎ ψ̇ sinψ + Ẏ 2

)
U = mgy = mω2

o l (Y + l cosψ)

where ωo =
√

g
l . Applying the Euler-Lagrange

equation yields

lψ̈ −
(
Ÿ + ω2

o l
)
sinψ = 0 .

Now, following Hand & Finch, we plug in
Y (t) = Yo cosΩt, and define a ≡

(
2ωo

Ω

)2
and

q ≡ 2Yo

l , to give

4
Ω2

ψ̈ − (a− 2q cosΩt) sinψ = 0 .

Finally, if we define τ = Ωt
2 , then this can be

slightly simplified to obtain:

d2ψ

dτ2
− (a− 2q cosΩt) sinψ = 0

which differs from Hand & Finch equation 10.36
only by a single − sign. Note that no approxi-
mations were made in this derivation.

7. and 8. (double credit problem)
Hand & Finch, Problem 10.9 (a)-(d) only (how
does a child pump a swing?)
Solution:
(a)
The Lagrangian for this system is

L =
m

2

(
l̇2 + l2θ̇2

)
+mgl cos θ .

Apply the Euler-Lagrange equation:

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0

d

dt
(ml2θ̇) +mgl sin θ = 0
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If we let θ � 1, then this becomes

d

dt
(l2θ̇) + glθ = 0 .

(b)
If we now substitute in l(t) = l̄(1 + δ(t)) and
τ =

√
g
l t, the above expression becomes:

d

dτ

(
(1 + δ)2θ̇

)
+ (1 + δ)θ = 0

Making the following substitutions

θ =
φ

l(t)
=

1
l̄

φ

(1 + δ)

θ̇ =
1
l̄

(
φ̇

1 + δ
− φδ̇

(1 + δ)2

)

yields

1
l̄

d

dτ

(
(1 + δ)2

(
φ̇

1 + δ
− φδ̇

(1 + δ)2

))

+ (1 + δ)
φ

l̄(1 + δ)
= 0

d

dτ

(
(1 + δ)φ̇− φδ̇

)
+ φ = 0

φ̈+

(
1− δ̈

1 + δ

)
φ = 0

(c)
For small δ,

(
1− δ̈

1 + δ

)
≈ (1− δ̈)(1− δ) ≈ 1− δ − δ̈ ,

in which case the DE becomes

φ̈+ φ = (δ + δ̈)φ .

Now, let

δ = δ0 cos 2τ

δ̈ = −4δ0 cos 2τ
φ = Al(0) cos τ +O(δ0)

We obtain as an equation for φ

φ̈+ φ = (δ0 cos 2τ − 4δ0 cos 2τ) Al(0) cos τ
= −3δ0Al(0) cos 2τ cos τ

Using the trig identity cos τ cos 2τ = 1
2 (cos τ +

cos 3τ) gives (to first order in δ0) the result:

φ̈+ φ = −3
2
δ0Al(0) (cos τ + cos 3τ)

(d)
The homogenous solution of the above DE is of
the form

φh = B sin τ + C cos τ ,

where B and C will need to be chosen to sat-
isfy the initial conditions (we will wait to do this
until we have the particular solution as well).
The particular solution to the above DE is the
sum of the particular solutions φ1 and φ3 to the
differential equations

φ̈1 + φ1 = −3
2
δ0Al(0) cos τ

φ̈3 + φ3 = −3
2
δ0Al(0) cos 3τ .

The equation for φ3 is easier to solve, so let’s do
it first. Substitute φ3 ≡ D cos 3τ to obtain

(−9D +D) cos 3τ = −3
2
δ0Al(0) cos 3τ

D =
3
16
δ0Al(0) .

Turning to the equation for φ1, if we were to sub-
stitute φ1 = E cos τ in analogy to the method we
used for φ1, the LHS would vanish and the equa-
tion would not be satisfied. Instead (more or less
by trial and error), we substitute φ1 = Fτ sin τ .
(If there is a rationale, it is that the extra factor
of τ can be expected to destroy the cancellation
on the LHS, allowing some harmonic function of
τ to survive.)

( d2

dτ2
+ 1

)
(Fτ sin τ) = −3

2
δ0Al(0) cos τ

d

dτ
(sin τ + τ cos τ) + τ sin τ = −3δ0Al(0)

2F
cos τ

2 cos τ = −3δ0Al(0)
2F

cos τ

F = −3
4
δ0Al(0) .
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Putting it all together, the general solution for
φ is

φ = φh + φ1 + φ3

= B sin τ + C cos τ

+ δ0Al(0)
(

3
16 cos 3τ −

3
4τ sin τ

)
.

The variable φ is the product of two time-
dependent functions:

φ(τ) = θ(τ)l(τ)
= θ(τ)(l̄ + δ0 cos 2τ) .

Taking its derivative with respect to τ ,

φ̇(τ) = θ̇(τ)(l̄ + δ0 cos 2τ)− 2θ(τ)δ0 sin 2τ .

Applying the initial conditions θ(0) = A, θ̇(0) =
0, we obtain the initial conditions on φ :

φ(0) = A(l̄ + δ0)
= Al(0)

φ̇(0) = 0 .

Finally we use these initial conditions to deter-
mine B and C:

Al(0) = φ(0)

= C + δ0Al(0)
(

3
16

)
Al(0)

(
1− 3

16δ0
)
= C

0 = φ̇(0)
= −B .

Plugging these values for B and C into the
general solution for φ, we obtain the complete
expresson for φ(τ):

φ(τ) = Al(0)
(
1− 3

16δ0
)
cos τ

+ 3
16Al(0)δ0 cos 3τ −

1
4Al(0)δ0τ sin τ .

Clearly, the coefficient of the last term is increas-
ing in magnitude linearly with time.


